Использования воды в промышленности. Вода и ее применение

15.08.2020

Потребности в воде возрастают из года в год. Основными потребителями воды являются промышленность и сельское хозяйство. Промышленное значение воды очень велико, так как практически все производственные процессы требуют большого ее количества. Но основными водопотребителями среди промышленных отраслей являются черная металлургия, цветная металлургия, химическая промышленность разных типов, а также теплоэнергетика, машиностроение находится в этом рейтинге на пятом месте. Благодаря универсальным свойствам вода находит в промышленности разнообразное применение как сырье, в качестве химического реагента, как растворитель, тепло- и хладоноситель . Например, из воды получают водород различными способами, водяной пар в тепловой и атомной энергетике; вода служит реагентом в производстве органических продуктов - спиртов, уксусного альдегида, фенола и других многочисленных реакциях гидратации и гидролиза. Однако для машиностроительной промышленности такое ее применение малоактуально. Гораздо более актуальны другие аспекты применения воды: в частности, во многих отраслях, в том числе и в машиностроении воду широко применяют в промышленности как дешевый, доступный, неогнеопасный растворитель твердых, жидких и газообразных веществ (очистка газов в мокрых циклонах, получение растворов и т.п.) . Как теплоноситель вода используется в различных системах теплообмена? в экзотермических и эндотермических процессах. Теплота фазового перехода воды значительно выше, чем для других веществ, вследствие чего конденсирующийся водяной пар является самым распространенным теплоносителем. Водяной пар и горячая вода имеют значительные преимущества перед другими теплоносителями - высокую теплоемкость, простоту регулирования температуры в зависимости от давления, высокую термическую стойкость и пр., вследствие чего являются уникальными теплоносителями при высоких температурах. Воду используют также как хладагент для отвода теплоты в экзотермических реакциях (в том числе в системах вентиляции и кондиционирования воздуха горячих цехов машиностроительного производства) .

В целях экономии расхода воды применяют так называемую оборотную воду, т.е. использованную и возвращенную в производственный цикл. А поскольку основная масса воды в промышленности используется для энергетических нужд и охлаждения, то качество ее не имеет большого значения. Поэтому основой сокращения водоемкости промышленного производства является оборотно-повторное водопользование, при котором однажды забранная из источника вода используется многократно, «увеличивая» тем самым запасы водных ресурсов и снижая их загрязнение. Переход с прямоточного на повторное водоснабжение позволяет сократить объемы водопотребления на ТЭС в 30-40 раз . Замена водного охлаждения воздушным в машиностроении и металлообработке, на ТЭС сократила бы здесь потребление воды на 70-80%. Большие возможности сокращения нерациональных расходов воды имеются и в инфраструктуре предприятий: всем хорошо известно, как велики утечки из неисправных кранов, другой санитарно-технической арматуры, из наружных водопроводных сетей. В последнем случае причиной утечек зачастую являются быстроизнашивающиеся трубы, и замена их на пластиковые трубы и трубы из стеклообразных материалов с повышенной антикоррозионностью позволила бы намного снизить расход воды. Однако в случае машиностроительного производства такой оборотный цикл не всегда возможен, ввиду того, что в промышленных стоках из цехов металлообработки, и особенно из гальванических цехов содержатся разнообразные химические реагенты и механические примеси . К таким аспектам относится и ситуации, рассматриваемая нами в отношении завода ОАО «Лепсе».

Анна Титова, главный специалист по водоподготовке ООО "Осмос", специально для www.сайт

Использование воды в промышленности

В современном мире с его высокоразвитыми технологиями все большее значение приобретает качество исходного сырья и сопутствующих технологическому процессу продуктов. Наиболее часто в производственных процессах используется вода. Поэтому на предприятиях различных отраслей промышленности стоит задача получить воду, соответствующую определенным требованиям.

Можно обозначить следующие направления использования воды в технологическом процессе:

    Вода выступает в качестве сырья для конечного продукта. Например, в пищевой промышленности, в производстве косметических средств, лекарственных препаратов, автокосметики и т.д. В этом случае от применяемой воды напрямую зависит качество получаемого продукта и его конкурентные преимущества.

    Вода используется в технологическом процессе. Например, для линий гидроабразивной резки, для линий порошковой окраски, в электронной промышленности. В этом случае от параметров воды может зависеть надежность и срок работы используемого оборудования (как правило, дорогостоящего) или качество получаемого изделия.

    Вода сопутствует технологическому процессу, как, например, оборотная вода систем охлаждения, нагрева, кондиционирования и т.п. От ее качества зависит срок службы коммуникаций.

Параметры используемой в промышленности воды

Для разных отраслей промышленности существуют свои требования к параметрам используемой воды.

Условно можно выделить основные категории, согласно которым нормируется качество воды.

Вода питьевая. Требования к питьевой воде в Российской Федерации регламентируются СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды». Питьевая вода необходима в пищевой промышленности, производстве алкогольных и безалкогольных напитков, для обеспечения питьевых нужд сотрудников предприятий.

Вода дистиллированная . Требования к такой воде изложены в «ГОСТ 6709-72 Вода дистиллированная. Технические условия». Основным показателем, определяющим качество дистиллированной воды, является ее электропроводность, которая должна быть не более 5 мкСм/см. Может также использоваться обратная электропроводности величина - электрическое сопротивление - для дистиллированной воды оно должно быть не менее 200 кОм*см. Дистиллированная вода требуется на многих химических производствах, в лабораториях, на типографиях и т.д.

Вода деионизованная . Понятие деионизованной воды достаточно условное - для разных технологических процессов требования к такой воде могут быть разные. Основным параметром, относительно которого нормируется деионизованная вода, является ее электрическое сопротивление. В зависимости от назначения, может требоваться получение воды с сопротивлением 500 кОм*см и более. Деионизованную воду используют в электронном приборостроении и во многих других технологических процессах.

Вода сверхчистая . Такая вода не должна содержать практически никаких ионов солей. Сопротивление сверхчистой воды составляет 12-18 МОм*см. Такая вода применяется в микроэлектронике, при выращивании кристаллов и т.д.

Вода специального назначения , нормируемая по параметрам, важным для конкретного технологического процесса. Например, может не допускаться концентрация каких-либо отдельных ионов или органических веществ выше заданной величины. Разработаны нормативы к воде для гальванического производства, для паровых котлов, для аквариумов и океанариумов и т.д.

Как мы видим, для различных областей промышленности может требоваться вода совершенно разного качества. Но есть одно требование, общее для всех предприятий - это СТАБИЛЬНОСТЬ результата.

Именно по этой причине, сегодня в промышленной водоподготовке наибольшее распространение получили мембранные системы водоочистки . Отличие таких систем от традиционных накопительных (сорбенты, ионообменные смолы, обезжелезивающие материалы) в том, что в процессе фильтрации они не накапливают внутри себя загрязнения, а механически отделяют их. Этот принцип исключает вероятность попадания нежелательных примесей в очищенную воду. Благодаря такой технологии, даже при значительном ухудшении параметров исходной воды, качество очищенной воды остается стабильно высоким.

Подробнее о методе мембранной фильтрации Вы можете прочитать в статьях на http://www.osmos.ru/prom/info.html

Можно выделить основные типовые схемы комплексов водоподготовки :

Получение питьевой воды

  • Установка обратного осмоса требуемой производительности;
  • Блок кондиционирования - фильтр с загрузкой из активированного угля;

Получение дистиллированной воды

  • Блок предварительной очистки (если требуется)
  • Емкости для запаса очищенной воды.

В некоторых случаях (при малом солесодержании исходной воды) может быть достаточно применения одноступенчатого обратного осмоса.

Такая схема водоподготовки является экономически выгодной альтернативой применяемым ранее дистилляторам-испарителям, потребляющим большое количество электроэнергии.

Получение деионизованной и сверхчистой воды.

  • Блок предварительной очистки (если требуется);
  • Установка двухступенчатого обратного осмоса требуемой производительности;
  • Емкости для запаса очищенной воды;
  • Блок глубокой очистки - фильтры с ионообменной смолой в Н+ и ОН- форме (если требуется).

Благодаря стабильно высокому качеству воды на выходе со второй ступени обратного осмоса, ресурс ионообменных смол в Н+ и ОН- форме становится очень высоким. Поскольку подобные смолы являются дорогостоящими, использование перед ними установок двухступенчатого обратного осмоса позволяет существенно снизить эксплуатационные затраты на замену смол.

Следует обратить внимание что «время жизни» высокочистой воды измеряется секундами, при контакте с воздухом вода мгновенно впитывает в себя углекислый газ, который, превращаясь в гидрокарбонаты, понижает электрическое сопротивление воды. Поэтому блок глубокой очистки должен находиться в непосредственной близости с точкой использования очищенной воды.

При проектировании комплексной системы водоподготовки для конкретного технологического процесса необходимо учитывать данные анализа исходной воды, требования к очищенной воде, необходимый суточный и пиковый расход очищенной воды, условия для размещения оборудования.
Задача эта нелегкая, поэтому при выборе оборудования необходимо обратиться к профессионалам.

Данная статья подготовлена компанией «Осмос».

ООО «Осмос» уже более 10 лет занимается разработкой и производством систем очистки воды на базе мембранной технологии, проектированием систем водоподготовки.

Вода в химической промышленности

Использование воды, свойства воды

Химическая промышленность - один из крупных потребителей воды. Вода используется почти во всех химических производствах для разнообразных целей. На отдельных химических предприятиях потребление воды достигает 1млн м 3 в сутки. Превращение воды в один из важнейших элементов химического производства объясняется:

Наличием комплекса ценных свойств (высокая теплоемкость, малая вязкость, низкая температура кипения);

Доступностью и дешевизной (затраты исключительно на извлечение и очистку);

Не токсичностью;

Удобством использования в производстве и транспортировке.

В химической промышленности вода используется в следующих направлениях:

1. Для технологических целей в качестве:

Растворителя твердых, жидких и газообразных веществ;

Среды для осуществления физических и механических процессов (флотация, транспортировка твердых материалов в виде пульпы);

Промывной жидкости для газов;

Экстрагента и абсорбента различных веществ.

2. Как теплоноситель (в виде горячей воды и пара) и хладагента для обогрева и охлаждения аппаратуры.

3. В качестве сырья и реагента для производства различной химической продукции (водорода, ацетилена, серной и азотной кислот.).

Воды морей и океанов - источники сырья для добычи многих химических веществ: из них извлекаются NaС1, МgСl, Br, I и др. продукты. Так например, содержание элементов в водах океана составляет: К-3.8 *10-2%, V- 5*10 -8 %, Аu -4*10 -10 %, Аg -5*10 -9 %. Приняв массу воды на планете-1.4 *10 18 , получим соответственно содержание в ней Аu-5.6 * 10 6 т.

Масштабы потребления воды химической промышленностью зависят от типа производства. Так, расходный коэффициент по воде (м 3 /т продукции) составляет: для азотной кислоты - 200, аммиака- 1500, синтетического каучука-1600. Например, завод капронового волокна расходует такое же количество воды, как город с населением 400тыс. человек. Общее количество воды на Земле составляет 1.386 *10 18 м 3

Природную воду принято делить на 3 вида, сильно различающихся по наличию примесей:

Атмосферная вода - вода дождевых и снеговых осадков, содержит минимальное количество примесей, главным образом, растворенные газы СО 2 , О 2 а в промышленных районах N0х, SОх. Почти не содержит растворенные соли.

Поверхностная вода - речные, озерные, морские, содержат различные минеральные и органические вещества, природа и концентрация которых зависят от климата, геоморфологических и гидротехнических мероприятий.

Подземная вода - вода артезианских скважин, колодцев, ключей, гейзеров. Для них характерно высокое содержание минеральных солей, выщелачиваемых из почвы и осадочных пород и малое содержание органических веществ.

Морская вода представляет многокомпонентный раствор электролитов и содержит все элементы, входящие в состав литосферы.

Вода, используемая в химической промышленности должна удовлетворять по качеству определенным требованиям. Качество воды определяется совокупностью физических и химических характеристик, к которым относятся: цвет, прозрачность, запах, общее солесодержание, жесткость, рН, окисляемость. Для промышленных вод важнейшими из этих характеристик являются солесодержание, жесткость, рН, содержание взвешенных веществ.

Жесткостью называется свойство воды, обусловленное присутствием в ней солей Са и Мg. В зависимости от природы анионов различают временную жесткость (устранимую, карбонатную), удаляемую при кипячении - Жв и постоянную (некарбонатную) - Жп. Сумма Жв и Жп называется общей жесткостью воды

Жо = Жв + Жп

Принята следующая классификация по жесткости: мягкая (Са и Мg до 3 мгэкв/л), умеренно- жесткая(3-6 мгэкв/л) и жесткая (более 6 мгэкв/л).

В зависимости от солесодержания природные воды делятся на пресные (с/с менее 1г/кг), солоноватые (с/с от 1 до 10 г/кг) и соленые (с/с более 10г/кг.

Окисляемость воды обусловлена наличием в воде органических примесей и определяется количеством мг перманганата калия, израсходованного при кипячении 1л воды.

РН воды характеризует ее кислотность щелочность.

Водооборотные циклы химико-технологических производств являются важным фактором рационального использования водных ресурсов. В этих циклах осуществляется многократное использование воды без выброса загрязненных стоков в водоемы, а потребление свежей воды для ее восполнения ограничено только технологическими превращениями и естественными потерями. В химических производствах используется 3 схемы водооборота в зависимости от технологических изменений, которые вода претерпевает в процессе производства.

Вода только нагревается и д.б. перед возвратом охлаждена в бассейне или градирне.

Вода только загрязнена и д. б. перед возвращением очищена в специальных очистных сооружениях.

Вода нагревается и загрязнена. Это комбинация 1 -го и 2 -го типа ВОЦ.


Промышленная водоподготовка

вода химический коллоидный водоподготовка

Вредное влияние примесей, содержащихся в промышленной воде, зависит от их химической природы, концентрации, дисперсного состояния, а также технологии конкретного производства использования воды. Все вещества, присутствующие в воде, могут находиться в виде истинного раствора (соли, газы, некоторые органические соединения в коллоидном состоянии) и во взвешенном состоянии (глинистые, песчаные, известковые частицы).

Растворенные в воде вещества образуют при нагревании накипь на стенках аппаратуры и вызывают коррозионное разрушение ее. Коллоидные примеси вызывают загрязнение диафрагмы электролизеров, вспенивание воды. Грубодисперсные взвеси засоряют трубопроводы, снижают их производительность, могут вызвать их закупорку. Все это вызывает необходимость предварительной подготовки воды, поступающей на производство- водоподготовку.

Промышленная водоподготовка представляет собой комплекс операций, обеспечивающих очистку воды - удаление из нее вредных примесей, находящихся в молекулярно-растворенном, коллоидном и взвешенном состоянии. Основные операции водоподготовки: очистка от взвешенных веществ отстаиванием и фильтрованием, умягчение, в отдельных случаях - обесцвечивание, нейтрализация, дегазация и обеззараживание.

Процесс отстаивания позволяет осветлять воду вследствие удаления из нее грубодисперсных веществ, оседающих под действием силы тяжести на дно отстойника. Отстаивание воды проводится в непрерывно- действующих отстойных бетонированных резервуарах. Для достижения полноты осветления и обесцвечивания декантируемую из отстойника воду подвергают коагуляции с последующим фильтрованием.

Коагуляция - высокоэффективный процесс разделения гетерогенных систем, в частности, выделение из воды мельчайших глинистых частиц и белковых веществ. Осуществляют коагуляцию введением в очищаемую воду небольших количеств электролитов Al 2 (S0 4) 3 > FеS0 4 и др. соединений, называемых коагулянтами. Физико-химическая сущность этого процесса в упрощенном виде состоит в том, что коагулянт в воде превращается в агрегат несущих заряд частиц, которые взаимодействуя с противоположно заряженными частицами примесей, обуславливают выпадение нерастворимого коллоидного осадка. Так, А1 2 (Б0 4) 3 в результате гидролиза и взаимодействия с солями кальция и магния, растворенными в воде, образует хлопьевидные положительно заряженные частицы А1(0Н) 3

А1 2 (Б0 4) 3 +6 Н 2 0 = 2А1(0Н) 3 +3Н 2 0 Н 2 S0 4 + Са(НС0 3) 2 = СаS0 4 +2Н 2 0 +2С0 2

Взаимодействие положительно заряженных частиц гидроокиси алюминия и несущих отрицательный заряд примесей приводит к быстрой коагуляции. Одновременно идет процесс адсорбции на поверхности осадка органических красящих веществ, в результате чего вода обесцвечивается. Обеззараживание воды обеспечивается ее хлорированием или озонированием. Дегазация - удаление из воды растворенных газов достигается химическим способом, при котором газы поглощаются химическими реагентами, например, в случае диоксида углерода:

СО 2 + Са(ОН) 2 = СаСО 3 +Н 2 О,

или физическими способами - термической деаэрацией на воздухе или в вакууме. Одной из основных и обязательных операций водоподготовки технологической воды является ее умягчение.

Схема промышленной водоподготовки


Умягчением называется обработка воды для понижения ее жесткости, т.е. уменьшения концентрации ионов кальция и магния различными физическими, химическими и физико-химическими методами.

При физическом методе воду нагревают до кипения, в результате чего растворимые гидрокарбонаты кальция и магния превращаются в их карбонаты, выпадающие в осадок:

Са(НСО 3) 2 = СаСО 3 + Н 2 О +СО 2 .

Этим методом удаляется только временная жесткость.

К химическим методам умягчения относятся фосфатный и известково-содовый, заключающийся в обработке тринатрийфосфатом или смесью гидроксида кальция и карбоната натрия. В первом случае протекает реакция образования нерастворимого трикальцийфосфата, выпадающего в осадок:

3СаS0 4 + 2 Na 3 Р0 4 = 3Nа 2 S0 4 + Са 3 (Р0 4) 2

Во втором случае протекают две реакции. Бикарбонаты кальция и магния реагируют с гидроксидом кальция, чем устраняется временная жесткость: Са(НС0 3) 2 + Са(0Н) 2 = 2 СаС0 3 +2 Н 2 0 , а сульфаты, нитраты и хлориды - с карбонатом натрия, чем устраняется постоянная жесткость:

СаS0 4 + Nа 2 С0 3 = Са С0 3 +Nа 2 Б0 4 .

Обессоливание применяется в тех производствах, где к воде предъявляются особо жесткие требования по чистоте, например, при получении полупроводниковых материалов, химически чистыхреактивов, фармацевтических препаратов. Обессоливание воды достигается методом ионного обмена, дистилляцией, электродиализом.

На вопрос подскажите: "Значение воды в промышленности? ". " заданный автором роскошный лучший ответ это Использование воды в промышленности, быту и сельском хозяйстве
В структуре водоотведения 35% приходится на все отрасли промышленности, кроме теплоэнергетики, 33% - на теплоэнергетику, 18% состовляют сбросы стоков с мелиорированных полей и 14%- сбросы коммунально-бытового хозяйства городов и сельских населенных пунктов.
Одним из главных потребителей воды являетсяорошаемое земледелие - 190 м3/год. Чтобы вырастить 1 т. хлопка, требуется 4-5 тыс. м3 пресной воды, 1 т. риса - 8 тыс. м3 . При орошении большая часть воды расходуется безвозвратно. Водопотребление на орошение зависит от трех факторов: площадей полива, состава культур и техники полива.
Главным способом полива является дождевание. Коэффициент полезного действия оросительных систем не превышает 0,6. Много воды просачивается в оросительных каналах, поднимая уровень грунтовых вод и вызывая засоление почвы. Значительно сокращаются потери воды при применении прогреccивных способов полива: капельного орошения, предпочвенного и мелкодисперсионного полива. Совершенствование оросительных систем, бетонирование дна, применение закрытых дренажей способствуют повышению КПД этих систем, но эти методы еще не полностью используются.
Коммунально-бытовое потреление воды превышает 20 км3/год. Уровень развития коммунального водоснабжения определяется двумя показателями: обеспеченностью населения централизированным водоснабжением и велечиной удельного водопотреблнения. Важной задачей является сокращение потребления водопроводной воды на технические нужды. В Москве, например, на долю промышленности приходится 25% подаваемой в столицу водопроводной воды. Однако нет никакой необходимости использовать питьевую воду на технические нужды. Для этого необходимо расширить сеть технических водопроводов, что существенно снизит себестоимость потребляемой воды.
Велики расходы воды в промышленности (около 90 км3/год) . Для выплавки 1 т. стали требуется 200-250 м3 воды, 1 т. целлюлозы - 1300 м3,...Велики резервы экономии воды в промышленности за счет внедрения прогрессивных технологических процессов. Например, на старых нефтехимических заводах для переработки 1т. нефти расходуется 18-22 м3 воды, в то время, как на современных заводах с оборотным водоснабжением и системами воздушного охлаждения - около 0,12 м3/год.
В настоящее время положение усугубляется тем, что после приватизации основного числа предприятий, в том числе и экологически грязных предприятий, новым хозяевам не хватает денег для постройки или модернизации очистных сооружений.

Вода и ее роль в промышленном производстве

Вода имеет ключевое значение в процессах появления жизни на Земле и ее постоянном поддержании, поскольку именно вода формирует климат, а еще она необходима для химических процессов, происходящих в телах людей и животных. Роль воды в жизни людей трудно переоценить. К основным потребителям пресной воды относятся: сельское хозяйство, промышленность, включая энергетику и коммунальное хозяйство. В промышленном производстве наиболее водоемкими являются химическая, целлюлозно-бумажная и металлургическая промышленность. Так, на изготовление 1 т синтетического волокна расходуется 2500...5000, пластмассы - 500...1000, бумаги - 400...800, стали и чугуна - 160...200 м3 воды. В промышленных целях по разным источникам расходуется от 8 до 20% всей используемой в мире воды, из них свыше 85% воды, расходуется в процессах охлаждения. Остальная часть расходуется в процессах мойки, промывки газов, для гидротранспорта и в качестве растворителя. Приблизительно полмиллиона литров воды расходуется на выпуск каждого легкового автомобиля; это количество включает как безвозвратно расходуемую воду, так и воду повторного использования.

На данный момент качество воды в различных регионах страны может сильно отличаться (все зависит от численности населения, рек, стоков, наличия крупных предприятий), но в целом вода не может похвастаться высоким качеством. Для повышения качества водоочистки приходится использовать самые современные технологии, а процесс очистки делать по-настоящему комплексным и проводить водоподготовку. При производстве и выпуске продукции, качество воды определяют характеристики конечного изделия. Это достигается либо путем удаления из воды вредных для используемого оборудования, или же готовой продукции веществ, либо охлаждением. Подготовленная вода, после прохождения химической очистки и (или) охлаждения в промышленном оборудовании, поступает непосредственно в производственный цикл.

Промышленная водоподготовка.

Водоподготовка - цикл мероприятий по водоочистке, который осуществляется с помощью установок умягчения, обезжелезивания а так же с помощью сорбционных, осадочных установок и УФ-обеззараживателей. Используя подобную автоматизированную технику для промышленной водоподготовки, можно сделать водоочистку практически непрерывным процессом, не тормозящим производство и обеспечивающим все стадии работ водой необходимого качества.

Специалисты выделяют следующие основные проблемы, стоящие перед промышленной водоподготовкой: жесткость воды, большое число примесей, цвет, замах, наличие бактерий и вирусов, другие загрязнения. Промышленная водоподготовка может включать в себя целый ряд очистительных мер. Одной из главных негативных характеристик воды является высокое содержание железа, влияющее как на работу использующей воду техники, так и на здоровье человека (если это, к примеру, пищевая индустрия), поскольку осадки надолго задерживаются в организме и влияют на его ежедневное функционирование.

Промышленная водоподготовка - это не только значительное повышение качества производимой продукции и продление срока службы оборудования, но и снижение воздействия вредных веществ на окружающую среду за счет уменьшения вредных водостоков. Основное предназначение промышленной водоочистки - это очистка воды для предприятий и объектов с большим потреблением воды в сутки. Очистка воды, в зависимости от требований потребителя применяется как общая, так и доочистка. Общая очистка включает в себя очистку от железа и солей жесткости. Доочистка - это обессоливание воды и её полное умягчение.

Для обеспечения водой предприятий, предъявляющих к качеству воды повышенные требования, таких как: медицинские учреждения, фармацевтические и пищевые объекты, спортивные комплексы и детские учреждения, применяется многоступенчатая система очистки. Сейчас практически все пищевые и мясомолочные предприятия РФ производят реконструкцию с заменой изношенного, или морально устаревшего оборудования на новые образцы импортного и российского производства. В связи с этим значительно меняется подход к исходной воде, поступающей по общегородским, или другим водопроводным сетям общего назначения, или воде, поступающей из артезианских скважин. В системах применяется реагентная обработка воды - для уничтожения опасных микроорганизмов, содержащихся в воде, обессоливание с применением обратного осмоса и ионного обмена, а также селективные ионообменные технологии.

На особо крупных предприятиях тяжелой промышленности в технологических циклах применяют оборудование, в процессе работы которого требуется его охлаждение. В этих целях, на таких предприятиях, зачастую используют системы оборотного водоснабжения, но при эксплуатации данных систем появляются проблемы с составом подпиточной воды и загрязнением стоков оборотной воды.

Обезжелезивание - процесс быстрой водоочистки при помощи обезжелезивателя, который производится в двух основных вариациях. В реагентный обезжелезиватель, используемый в быту и на промышленной водоподготовке, для улучшения и ускорения обезжелезивания засыпаются специальные вещества. Безреагентный обезжелезиватель для промышленной водоподготовки осуществляет водоподготовку каталитическим методом.

Кроме обезжелезивания, в промышленной водоподготовке часто проводится умягчение воды , которое осуществляется посредством специализированного оборудования. Жесткая вода не только противопоказана для питья, без проведения водоочистки она также влияет на работу оборудования, так как нагревающие элементы быстро зарастают и в конце концов ломаются. Умягчение воды во время промышленной водоподготовки производится с помощью метода ионного обмена, реагентного умягчения или нанофильтрации, которые даже при непрерывной водоочистке справляются с ионами кальция и магния, губительными для оборудования последующей водоподготовки.

Иногда возникает необходимость водоподготовки посредством водоочистки от больших остаточных элементов, примесей или же видимых частиц. Для такой водоподготовки используются особые осадочные установки, удаляющие из водопроводной или добытой из скважин воды песок, ржавчину или другие материалы. То есть осадочная техника занимается механической водоочисткой, важной, например, для коммунальных служб и различных предприятий.

Для ряда производств водоочистка от металлов и различных солей является недостаточной, поскольку возникает необходимость полноценной промышленной водоподготовки с удалением любых, даже самых малых примесей. Для этого используются сорбционные установки водоподготовки , специализирующиеся на активной очистке сточных и других вод от осевших малых частиц размером в 5 микрон. Данный этап промышленной водоподготовки следует, как правило, за более грубой водоочисткой от коллоидных примесей. Работают сорбционные установки по водоподготовке за счет использования синтетических волокнистых материалов вроде лепестков полиэстера и полипропиленовых нитей.

Важным этапом в промышленной водоподготовке является дополнительная очистка от бактерий, вирусов и других вредных элементов, влияющих на показатели воды и ее возможности по потреблению и использованию в производстве. Одним из самых современных решений данного вопроса стали ультрафиолетовые лампы для промышленной водоподготовки. Это позволяет использовать УФ-обеззараживатели в водоподготовке на предприятиях пищевой промышленности, где удаление вредоносных элементов и водоочистка обязательны для простой безопасности и сохранности итогового продукта.

Промышленная водоподготовка подразумевает и важность слежения над кислотно-щелочными показателями воды . Например, жидкость с высоким уровнем pH негативно воздействует на технику, которая ломается при долгом использовании воды, не прошедшей водоподготовку. Более того, несбалансированная вода вредна для здоровья, а многие химические процессы в воде, не прошедшей водоподготовку и балансировку кислотно-щелочных показателей, или невозможны, или происходят не в полную силу. Таким образом, предварительная водоочистка от кислот и нормализация уровня pH обеспечат сохранность оборудования (включая другие устройства водоподготовки) и значительное улучшение качества самой воды.

В наше время проблема очистки воды становится все более и более актуальной. Это касается как очистки питьевой воды, так и водоподготовки промышленных предприятий. Конечно, для разных отраслей промышленности необходима та или иная степень очистки воды. Но в любом случае, при необходимости получить воду самого лучшего качества, без примесей солей и других составляющих, одной только обычной фильтрации совершенно недостаточно.

Современные технологии, основанные на принципе обратного осмоса, позволяют произвести очистку воды на молекулярном уровне. И освободить ее не только от солей, но и от разного рода органических соединений, в том числе вирусов и бактерий. обессоливание воды, или деминерализация -очень важный физический процесс удаления солей при использовании воды в технологических процессах котельных, парогенераторных, пищевых, медицинских и других установках, для предотвращения накипи и быстрого износа оборудования. За счет обессоливания, водоподготовка снижает концентрацию солей и минералов до заданного значения, и делает исходную воду пригодной в качестве питьевой, охлаждающей, или технологичной жидкости.

Прямой осмос использован на применении мембран, способных пропускать только молекулы воды, задерживая при этом все другие молекулы. Разделив такой мембраной, например, два сообщающихся сосуда с более, или менее чистой водой, можно увидеть, что уровень воды в сосуде с менее чистой водой со временем поднимется. Это произойдет за счет того, что через мембрану будут поступать только молекулы воды, стремясь уравновесить концентрацию в обоих сосудах. Это и есть явление прямого осмоса. Логически следует, что если создать давление в более "грязном" сосуде, то молекулы воды будут поступать, наоборот, в более "чистый" сосуд, делая воду еще более чистой. А это уже принцип обратного осмоса.

Таким образом, используя такие мембраны вместе с фильтрами предварительной очистки, можно создать высокоэффективную систему водоподготовки предприятий, основанную на принципе обратного осмоса. Иными словами, процесс обратного осмоса основан на прохождение воды сквозь мембрану из более насыщенного раствора солей в менее насыщенный раствор под действием давления, которое превышает разницу осмотических значений давлений в обоих растворах.

Использование оборотной воды.

Интенсивное развитие промышленности и сельскохозяйственного производства, повышение уровня благоустройства городов и населенных пунктов, значительный прирост населения обусловили в последние десятилетия дефицит и резкое ухудшение качества водных ресурсов практически во всех регионах России.

Одним от основных путей удовлетворения потребностей общества в воде является инженерное воспроизводство водных ресурсов, т.е. их восстановление и приумножение не только в количественном, но и в качественном отношении.

Перспективы рационального воспроизводства технологического расхода воды связаны с созданием на предприятиях систем повторно-последовательного, оборотного и замкнутого водоснабжения. В их основу положено удивительное свойство воды, позволяющее ей не изменять своей физической сущности после участия в производственных процессах.

Промышленность России характеризуется высоким уровнем развития систем оборотного водоснабжения, за счет которых экономия свежей воды, расходуемой на производственные нужды, составляет в среднем 78%. Лучшие показатели использования оборотных систем имеют предприятия газовой (97%), нефтеперерабатывающей (95%) отраслей, черной металлургии (94%), химической и нефтехимической (91%) промышленности, машиностроения (85%).

Максимальные расходы воды в системах оборотного и повторно-последовательного водоснабжения характерны для Уральского, Центрального, Поволжского и Западно-Сибирского экономических районов. В целом по России соотношение объемов использования свежей и оборотной воды составляет соответственно 35,5 и 64,5%.

Широкое внедрение совершенных водооборотных систем (вплоть до замкнутых) способно не только решить проблему водообеспечения потребителей, но и сохранить природные водоисточники в экологически чистом состоянии.



© imht.ru, 2024
Бизнес-процессы. Инвестиции. Мотивация. Планирование. Реализация