Факторный анализ статистические методы и практические вопросы. Как используется факторный анализ. Двухфакторный дисперсионный анализ в Excel

27.11.2023

Statistica 6 q. Подготовка корреляционной матрицы для факторного анализа q. Создание матрицы для факторного анализа q. Факторный анализ q. Выделение факторных нагрузок q. Построение факторной диаграммы

Подготовка корреляционной матрицы для факторного анализа в программе Statistica Поскольку наши ранги представляют собой порядковые шкалы, то адекватными этому виду шкал будут являться два коэффициента: Спирмена и Кендалла. Будем считать Кендаллом, т. к. он более точный. Вводим наши сырые данные в программу Statistica

Мы получили факторную матрицу, рассчитанную коэффициентом Кендалла, т. к. именно он является адекватным для наших данных, которые представляют собой шкалы порядка.

Создание матрицы для расчета ФА Теперь нужно создать матрицу такой структуры, по которой Statistica сможет осуществить факторный анализ. Необходимо, чтобы матрица, помимо значений корреляций между переменными, включала еще 4 строки под ними: 1) средние значения рангов, 2) стандартные отклонения рангов, 3) кол-во оцениваемых объектов и 4) тип матрицы. Нажимаем Анализ и выбираем Основные статистики и таблицы

В итоге мы получили корреляционную матрицу для ФА, которую сможет прочитать Statistica. Однако, корреляционный анализ здесь был осуществлен коэффициентом Пирсона. Поэтому данную корреляционную матрицу (5 х5) нужно заменить на посчитанную нами коэффциентом Кендалла (скопировать и вставить).

Как видно, значения корреляций по Кендаллу отличаются от значений по Пирсону. Это объясняется тем, что наши ранги представляют собой шкалы порядка, для которых применение коэффициента Пирсона неадекватно. Теперь можем приступать к факторному анализу.

Переменные → выделяем все 5 переменных Var 1 Var 5 → в поле Файл данных ставим Корреляционная матрица → ОК

Макс. Число факторов задаем 5 (т. к. у нас всего 5 переменных) → выбираем Центроидный метод (был разработан Терстоуном и реализует геометрический подход к ФА) → ОК

Программа выделила 2 фактора. Чтобы посмотреть факторные нагрузки, нажимаем кнопку Факторные нагрузки. Чтобы построить факторную диаграмму, нажмем 2 М график нагрузок.

Statgraphics Centurion q. Факторный анализ q. Выделение факторных нагрузок q. Построение факторной диаграммы q. Построение объектной диаграммы

В программе не предусмотрена возможность заложить свою корреляционную матрицу, поэтому начинаем сразу с анализа наших рангов. Вбиваем наши ранги и выбираем Analyze → Variable Data → Multivariate Methods → Factor Analysis

В итоге, программа выделила нам 2 фактора с уровнем объясненной дисперсии 82, 468 %. Это значит, что этими факторами объясняется 82, 468 % (почти 4/5) всей нашей информации по пяти переменным.

График каменистой осыпи (2 фактора) На графике показано, что вся объясненная информация приходится на 1 и 2 факторы (2 точки над красной линией)

Факторные нагрузки Нажимаем Tables (вторая кнопка слева на панели) Ставим галочку возле Extraction Statistics → ОК

Как видно факторные нагрузки на уровне десятых отличаются от тех, что мы получили при ручном расчете и в Statistica. Объясняется это тем, что в Statgraphics нельзя заложить свою корреляционную матрицу и программа всегда считает коэффициентом Пирсона, что не адекватно для данных в шкалах порядка.

Факторная диаграмма Нажимаем Graphs (третья кнопка слева на панели) Ставим галочку возле 2 D Factor Plot (если бы у нас было больше 2 -х факторов, мы бы поставили галочку напротив 3 D Factor Plot, чтобы получить трехмерный график) → ОК

Мы получили факторную матрицу после вращения. Отрезки (проекции точек, образованные факторными нагрузками) 2 и 5 расположены близко к оси y (стремятся к 0) и удалены от оси x. Это значит, что координаты этих точек по оси x (которая соответствует первому фактору) представлены низкими значениями (0, 6). Следовательно шкалы 2 и 5 представляют собой 1 фактор. По такому же принципу отрезок 1, говорит о том, что шкалы 1, 3 и 4 представляют собой 2 фактор.

Объектная диаграмма Нажимаем Graphs (третья кнопка слева на панели) Ставим галочку возле 2 D Scatterplot (если бы у нас было больше 2 -х факторов, мы бы поставили галочку напротив 3 D Scatterplot, чтобы получить трехмерный график) → ОК

ФАКТОРНЫЙ АНАЛИЗ

Идея факторного анализа

При исследовании сложных объектов, явлений, систем факторы, определяющие свойства этих объектов, очень часто невозможно измерить непосредственно, а иногда неизвестно даже их число и смысл. Но для измерения могут быть доступны другие величины, так или иначе зависящие от интересующих нас факторов. Причем, когда влияние неизвестного интересующего нас фактора проявляется в нескольких измеряемых признаках или свойствах объекта, эти признаки могут обнаруживать тесную связь между собой и общее число факторов может быть гораздо меньше, чем число измеряемых переменных.

Для выявления факторов, определяющих измеряемые признаки объектов, используются методы факторного анализа

В качестве примера применения факторного анализа можно указать изучение свойств личности на основе психологических тестов. Свойства личности не поддаются прямому измерению. О них можно судить только по поведению человека или характеру ответов на вопросы. Для объяснения результатов опытов их подвергают факторному анализу, который и позволяет выявить те личностные свойства, которые оказывают влияние на поведение индивидуума.
В основе различных методов факторного анализа лежит следующая гипотеза: наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемого объекта, в действительности существуют внутренние (скрытые, латентные, не наблюдаемые непосредственно) параметры и свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято называть факторами.

Цель факторного анализа – сконцентрировать исходную информацию, выражая большое число рассматриваемых признаков через меньшее число более ёмких внутренних характеристик явления, которые, однако, не поддаются непосредственному измерению

Установлено, что выделение и последующее наблюдение за уровнем общих факторов даёт возможность обнаруживать предотказные состояния объекта на очень ранних стадиях развития дефекта. Факторный анализ позволяет отслеживать стабильность корреляционных связей между отдельными параметрами. Именно корреляционные связи между параметрами, а также между параметрами и общими факторами содержат основную диагностическую информацию о процессах. Применение инструментария пакета Statistica при выполнении факторного анализа исключает необходимость использования дополнительных вычислительных средств и делает анализ наглядным и понятным для пользователя.

Результаты факторного анализа будут успешными, если удается дать интерпретацию выявленных факторов, исходя из смысла показателей, характеризующих эти факторы. Данная стадия работы весьма ответственная; она требует чёткого представления о содержательном смысле показателей, которые привлечены для анализа и на основе которых выделены факторы. Поэтому при предварительном тщательном отборе показателей для факторного анализа следует руководствоваться их смыслом, а не стремлением к включению в анализ как можно большего их числа.

Сущность факторного анализа

Приведём несколько основных положений факторного анализа. Пусть для матрицы Х измеренных параметров объекта существует ковариационная (корреляционная) матрица C , где р – число параметров, n – число наблюдений. Путем линейного преобразования X =QY +U можно уменьшить размерность исходного факторного пространства Х до уровня Y , при этом р "<<р . Это соответствует преобразованию точки, характеризующей состояние объекта в j -мерном пространстве, в новое пространство измерений с меньшей размерностью р ". Очевидно, что геометрическая близость двух или множества точек в новом факторном пространстве означает стабильность состояния объекта.

Матрица Y содержит ненаблюдаемые факторы, которые по существу являются гиперпараметрами, характеризующими наиболее общие свойства анализируемого объекта. Общие факторы чаще всего выбирают статистически независимыми, что облегчает их физическую интерпретацию. Вектор наблюдаемых признаков Х имеет смысл следствия изменения этих гиперпараметров.

Матрица U состоит из остаточных факторов, которые включают в основном ошибки измерения признаков x (i ). Прямоугольная матрица Q содержит факторные нагрузки, определяющие линейную связь между признаками и гиперпараметрами.
Факторные нагрузки – это значения коэффициентов корреляции каждого из исходных признаков с каждым из выявленных факторов. Чем теснее связь данного признака с рассматриваемым фактором, тем выше значение факторной нагрузки. Положительный знак факторной нагрузки указывает на прямую (а отрицательный знак – на обратную) связь данного признака с фактором.

Таким образом, данные о факторных нагрузках позволяют сформулировать выводы о наборе исходных признаков, отражающих тот или иной фактор, и об относительном весе отдельного признака в структуре каждого фактора.

Модель факторного анализа похожа на модели многомерного регрессионного и дисперсионного анализа. Принципиальное отличие модели факторного анализа в том, что вектор Y – это ненаблюдаемые факторы, а в регрессионном анализе – это регистрируемые параметры. В правой части уравнения (8.1) неизвестными являются матрица факторных нагрузок Q и матрица значений общих факторов Y.

Для нахождения матрицы факторных нагрузок используют уравнениеQQ т =S–V, где Q т – транспонированная матрица Q, V – матрица ковариаций остаточных факторов U, т.е. . Уравнение решается путем итераций при задании некоторого нулевого приближения ковариационной матрицы V(0). После нахождения матрицы факторных нагрузок Q вычисляются общие факторы (гиперпараметры) по уравнению
Y=(Q т V -1)Q -1 Q т V -1 X

Пакет статистического анализа Statistica позволяет в диалоговом режиме вычислить матрицу факторных нагрузок, а также значения нескольких заранее заданных главных факторов, чаще всего двух – по первым двум главным компонентам исходной матрицы параметров.

Факторный анализ в системе Statistica

Рассмотрим последовательность выполнения факторного анализа на примере обработки результатов анкетного опроса работников предприятия . Требуется выявить основные факторы, которые определяют качество трудовой жизни.

На первом этапе необходимо отобрать переменные для проведения факторного анализа. Используя корреляционный анализ, исследователь пытается выявить взаимосвязь исследуемых признаков, что, в свою очередь, даёт ему возможность выделить полный и безызбыточный набор признаков путём объединения сильно коррелирующих признаков.

Если проводить факторный анализ по всем переменным, то результаты могут получиться не совсем объективными, так как некоторые переменные определяется другими данными, и не могут регулироваться сотрудниками рассматриваемой организации.

Для того чтобы понять, какие показатели следует исключить, построим по имеющимся данным матрицу коэффициентов корреляции в Statistica: Statistics/ Basic Statistics/ Correlation Matrices/ Ok. В стартовом окне этой процедуры Product-Moment and Partial Correlations (рис. 4.3) для расчёта квадратной матрицы используется кнопка One variable list. Выбираем все переменные (select all), Ok, Summary. Получаем корреляционную матрицу.

Если коэффициент корреляции изменяется в пределах от 0,7 до 1, то это означает сильную корреляцию показателей. В этом случае можно исключить одну переменную с сильной корреляцией. И наоборот, если коэффициент корреляции мал, можно исключить переменную из-за того, что она ничего не добавит к общей сумме. В нашем случае сильной корреляции между какими-либо переменными не наблюдается, и факторный анализ будем проводить для полного набора переменных.

Для запуска факторного анализа необходимо вызвать модуль Statistics/ Multivariate Exploratory Techniques (многомерные исследовательские методы)/ Factor Analysis (факторный анализ). На экране появится окно модуля Factor Analysis.



Для анализа выбираем все переменные электронной таблицы; Variables (переменные): select all, Ok. В строке Input file (тип файла входных данных) указывается Raw Data (исходные данные). В модуле возможны два типа исходных данных – Raw Data (исходные данные) и Correlation Matrix – корреляционная матрица.

В разделе MD deletion задаётся способ обработки пропущенных значений:
* Casewise – способ исключения пропущенных значений (по умолчанию);
* Pairwise – парный способ исключения пропущенных значений;
* Mean substitution – подстановка среднего вместо пропущенных значений.
Способ Casewise состоит в том, что в электронной таблице, содержащей данные, игнорируются все строки, в которых имеется хотя бы одно пропущенное значение. Это относится ко всем переменным. В способе Pairwise игнорируются пропущенные значения не для всех переменных, а лишь для выбранной пары.

Выберем способ обработки пропущенных значений Casewise.

Statistica обработает пропущенные значения тем способом, который указан, вычислит корреляционную матрицу и предложит на выбор несколько методов факторного анализа.

После нажатия кнопки Ok появляется окно Define Method of Factor Extraction (определить метод выделения факторов).

Верхняя часть окна является информационной. Здесь сообщается, что пропущенные значения обработаны методом Casewise. Обработано 17 наблюдений и 17 наблюдений принято для дальнейших вычислений. Корреляционная матрица вычислена для 7 переменных. Нижняя часть окна содержит 3 вкладки: Quick, Advanced, Descriptives.

Во вкладке Descriptives (описательные статистики) имеются две кнопки:
1- просмотреть корреляции, средние и стандартные отклонения;
2- построить множественную регрессию.

Нажав на первую кнопку, можно посмотреть средние и стандартные отклонения, корреляции, ковариации, построить различные графики и гистограммы.

Во вкладке Advanced, в левой части, выберем метод (Extraction method) факторного анализа: Principal components (метод главных компонент). В правой части выбираем максимальное число факторов (2). Задаётся либо максимальное число факторов (Max no of factors), либо минимальное собственное значение: 1 (eigenvalue).

Нажимаем Ok, и Statistica быстро произвёдет вычисления. На экране появляется окно Factor Analysis Results (результаты факторного анализа). Как говорилось ранее, результаты факторного анализа выражаются набором факторных нагрузок. Поэтому далее будем работать с вкладкой Loadings.

Верхняя часть окна – информационная:
Number of variables (число анализируемых переменных): 7;
Method (метод выделения факторов): Principal components (главных компонент);
Log (10) determinant of correlation matrix (десятичный логарифм детерминанта корреляционной матрицы): –1,6248;
Number of factors extracted (число выделенных факторов): 2;
Eigenvalues (собственные значения): 3,39786 и 1,19130.
В нижней части окна находятся функциональные кнопки, позволяющие всесторонне просмотреть результаты анализа, числено и графически.
Factor rotation – вращение факторов, в данном выпадающем окне можно выбрать различные повороты осей. С помощью поворота системы координат можно получить множество решений, из которого необходимо выбрать интерпретируемое решение.

Существуют различные методы вращения координат пространства. Пакет Statistica предлагает восемь таких методов, представленных в модуле факторного анализа. Так, например, метод варимакс соответствует преобразованию координат: вращение, максимизирующее дисперсию. В методе варимакс получают упрощённое описание столбцов факторной матрицы, сводя все значения к 1 или 0. При этом рассматривается дисперсия квадратов нагрузок фактора. Факторная матрица, получаемая с помощью метода вращения варимакс, в большей степени инвариантна по отношению к выбору различных множеств переменных.

Вращение методом квартимакс ставит целью аналогичное упрощение только по отношению к строкам факторной матрицы. Эквимакс занимает промежуточное положение? при вращении факторов по этому методу одновременно делается попытка упростить и столбцы, и строки. Рассмотренные методы вращения относятся к ортогональным вращениям, т.е. в результате получаются некоррелированные факторы. Методы прямого облимина и промакс вращения относятся к косоугольным вращениям, в результате которых получаются коррелированные между собой факторы. Термин?normalized? в названиях методов указывает на то, что факторные нагрузки нормируются, то есть делятся на квадратный корень из соответствующей дисперсии.

Из всех предлагаемых методов, мы сначала посмотрим результат анализа без вращения системы координат – Unrotated. Если полученный результат окажется интерпретируемым и будет нас устраивать, то на этом можно остановиться. Если нет, можно вращать оси и посмотреть другие решения.

Щёлкаем по кнопке "Factor Loading" и смотрим факторные нагрузки численно.



Напомним, что факторные нагрузки – это значения коэффициентов корреляции каждой из переменных с каждым из выявленных факторов.

Значение факторной нагрузки, большее 0,7 показывает, что данный признак или переменная тесно связан с рассматриваемым фактором. Чем теснее связь данного признака с рассматриваемым фактором, тем выше значение факторной нагрузки. Положительный знак факторной нагрузки указывает на прямую (а отрицательный знак? на обратную) связь данного признака с фактором.
Итак, из таблицы факторных нагрузок было выявлено два фактора. Первый определяет ОСБ – ощущение социального благополучия. Остальные переменные обусловлены вторым фактором.

В строке Expl. Var (рис. 8.5) приведена дисперсия, приходящаяся на тот или иной фактор. В строке Prp. Totl приведена доля дисперсии, приходящаяся на первый и второй фактор. Следовательно, на первый фактор приходится 48,5 % всей дисперсии, а на второй фактор – 17,0 % всей дисперсии, всё остальное приходится на другие неучтенные факторы. В итоге, два выявленных фактора объясняют 65,5 % всей дисперсии.



Здесь мы также видим две группы факторов – ОСБ и остальное множество переменных, из которых выделяется ЖСР – желание сменить работу. Видимо, имеет смысл исследовать это желание более основательно на основе сбора дополнительных данных.

Выбор и уточнение количества факторов

Как только получена информация о том, сколько дисперсии выделил каждый фактор, можно возвратиться к вопросу о том, сколько факторов следует оставить. По своей природе это решение произвольно. Но имеются некоторые общеупотребительные рекомендации, и на практике следование им даёт наилучшие результаты.

Количество общих факторов (гиперпараметров) определяется путём вычисления собственных чисел (рис. 8.7) матрицы Х в модуле факторного анализа. Для этого во вкладке Explained variance (рис. 8.4) необходимо нажать кнопку Scree plot.


Максимальное число общих факторов может быть равно количеству собственных чисел матрицы параметров. Но с увеличением числа факторов существенно возрастают трудности их физической интерпретации.

Сначала можно отобрать только факторы, с собственными значениями, большими 1. По существу, это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается. Этот критерий используется наиболее широко. В приведённом выше примере на основе этого критерия следует сохранить только 2 фактора (две главные компоненты).

Можно найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только "факториальная осыпь". В соответствии с этим критерием можно оставить в примере 2 или 3 фактора.
Из рис. видно, что третий фактор незначительно увеличивает долю общей дисперсии.

Факторный анализ параметров позволяет выявить на ранней стадии нарушение рабочего процесса (возникновение дефекта) в различных объектах, которое часто невозможно заметить путём непосредственного наблюдения за параметрами. Это объясняется тем, что нарушение корреляционных связей между параметрами возникает значительно раньше, чем изменение одного параметра. Такое искажение корреляционных связей позволяет своевременно обнаружить факторный анализ параметров. Для этого достаточно иметь массивы зарегистрированных параметров.

Можно дать общие рекомендации по использованию факторного анализа вне зависимости от предметной области.
* На каждый фактор должно приходиться не менее двух измеренных параметров.
* Число измерений параметров должно быть больше числа переменных.
* Количество факторов должно обосновываться, исходя из физической интерпретации процесса.
* Всегда следует добиваться того, чтобы количество факторов было намного меньше числа переменных.

Критерий Кайзера иногда сохраняет слишком много факторов, в то время как критерий каменистой осыпи иногда сохраняет слишком мало факторов. Однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике более важен вопрос о том, когда полученное решение может быть интерпретировано. Поэтому обычно исследуется несколько решений с большим или меньшим числом факторов, и затем выбирается одно наиболее осмысленное.

Пространство исходных признаков должно быть представлено в однородных шкалах измерения, т. к. это позволяет при вычислении использовать корреляционные матрицы. В противном случае возникает проблема "весов" различных параметров, что приводит к необходимости применения при вычислении ковариационных матриц. Отсюда может появиться дополнительная проблема повторяемости результатов факторного анализа при изменении количества признаков. Следует отметить, что указанная проблема просто решается в пакете Statistica путем перехода к стандартизированной форме представления параметров. При этом все параметры становятся равнозначными по степени их связи с процессами в объекте исследования.

Плохо обусловленные матрицы

Если в наборе исходных данных имеются избыточные переменные и не проведено их исключение корреляционным анализом, то нельзя вычислить обратную матрицу (8.3). Например, если переменная является суммой двух других переменных, отобранных для этого анализа, то корреляционная матрица для такого набора переменных не может быть обращена, и факторный анализ принципиально не может быть выполнен. На практике это происходит, когда пытаются применить факторный анализ к множеству сильно зависимых переменных, что иногда случается, например, в обработке вопросников. Тогда можно искусственно понизить все корреляции в матрице путём добавления малой константы к диагональным элементам матрицы, и затем стандартизировать её. Эта процедура обычно приводит к матрице, которая может быть обращена, и поэтому к ней применим факторный анализ. Более того, эта процедура не влияет на набор факторов, но оценки оказываются менее точными.

Факторное и регрессионное моделирование систем с переменными состояниями

Системой с переменными состояниями (СПС) называется система, отклик которой зависит не только от входного воздействия, но и от обобщенного постоянного во времени параметра, определяющего состояние. Регулируемый усилитель или аттенюатор? это пример простейшей СПС, в котором коэффициент передачи может дискретно или плавно изменяться по какому-либо закону. Исследование СПС обычно проводится для линеаризованных моделей, в которых переходный процесс, связанный с изменением параметра состояния, считается завершённым.

Аттенюаторы, выполненные на основе Г-, Т- и П-образного соединения последовательно и параллельно включённых диодов получили наибольшее распространение. Сопротивление диодов под воздействием управляющего тока может меняться в широких пределах, что позволяет изменять АЧХ и затухание в тракте. Независимость фазового сдвига при регулировании затухания в таких аттенюаторах достигается с помощью реактивных цепей, включенных в базовую структуру. Очевидно, что при разном соотношении сопротивлений параллельных и последовательных диодов может быть получен один и тот же уровень вносимого ослабления. Но изменение фазового сдвига будет различным.

Исследуем возможность упрощения автоматизированного проектирования аттенюаторов, исключающего двойную оптимизацию корректирующих цепей и параметров управляемых элементов. В качестве исследуемой СПС будем использовать электрически управляемый аттенюатор, схема замещения которого приведена на рис. 8.8. Минимальный уровень затухания обеспечивается в случае малого сопротивления элемента Rs и большого сопротивления элемента Rp. По мере увеличения сопротивления элемента Rs и уменьшения сопротивления элемента Rp вносимое ослабление увеличивается.

Зависимости изменения фазового сдвига от частоты и затухания для схемы без коррекции и с коррекцией приведены на рис. 8.9 и 8.10 соответственно. В корректированном аттенюаторе в диапазоне ослаблений 1,3-7,7 дБ и полосе частот 0,01?4,0 ГГц достигнуто изменение фазового сдвига не более 0,2°. В аттенюаторе без коррекции изменение фазового сдвига в той же полосе частот и диапазоне ослаблений достигает 3°. Таким образом, фазовый сдвиг уменьшен за счет коррекции почти в 15 раз.


Будем считать параметры коррекции и управления независимыми переменными или факторами, влияющими на затухание и изменение фазового сдвига. Это даёт возможность с помощью системы Statistica провести факторный и регрессионный анализ СПС с целью установления физических закономерностей между параметрами цепи и отдельными характеристиками, а также упрощения поиска оптимальных параметров схемы.

Исходные данные формировались следующим образом. Для параметров коррекции и сопротивлений управления, отличающихся от оптимальных в большую и меньшую стороны на сетке частот 0,01?4 ГГц, были вычислены вносимое ослабление и изменение фазового сдвига.

Методы статистического моделирования, в частности, факторный и регрессионный анализ, которые раньше не использовались для проектирования дискретных устройств с переменными состояниями, позволяют выявить физические закономерности работы элементов системы. Это способствует созданию структуры устройства исходя из заданного критерия оптимальности. В частности, в данном разделе рассматривался фазоинвариантный аттенюатор как типичный пример системы с переменными состояниями. Выявление и интерпретация факторных нагрузок, влияющих на различные исследуемые характеристики, позволяет изменить традиционную методологию и существенно упростить поиск параметров коррекции и параметров регулирования.

Установлено, что использование статистического подхода к проектированию подобных устройств оправдано как для оценки физики их работы, так и для обоснования принципиальных схем. Статистическое моделирование позволяет существенно сократить объём экспериментальных исследований.

Результаты

  • Наблюдение за общими факторами и соответствующими факторными нагрузками – это необходимое выявление внутренних закономерностей процессов.
  • С целью определения критических значений контролируемых расстояний между факторными нагрузками следует накапливать и обобщать результаты факторного анализа для однотипных процессов.
  • Применение факторного анализа не ограничено физическими особенностями процессов. Факторный анализ является как мощным методом мониторинга процессов, так и применим к проектированию систем самого различного назначения.

Если значения прогнозируемого параметра зависят не от времени, а от каких-либо дру­гих факторов, то используется факторный статистический анализ. Обычно для этого с помо­щью ПЭВМ по известной статистике подбирается аппроксимирующая функция одной или многих переменных, которая и служит моделью для выработки прогноза. Рассмотрим эту процедуру на примере.

Пример.

Предприниматель реализует мороженное у станции метро "Политехническая". Он должен сделать заказ на будущую педелю с разбивкой по дням. Каждое утро заказанное ко­личество товара завозится на его точки реализации. При неправильном заказе (прогнозе) в конце дня мороженного может не хватить тогда имеет место упущенная выгода, либо часть его останется нереализованной и тогда возникнут проблемы с его сохранением до завтрашнего утра. Требуется выявить факторы, определяющие продажи, собрать стати­стику продаж и значений этих факторов, далее разработать прогноз продаж морожен­ного на будущую неделю. Предполагается, что дело происходит в разгаре лета.

Решение.

Среди факторов, влияющих на продажи мороженного в разгар лета, отобраны два наиболее существенных: температура воздуха и день недели. Отметим, что второй фак­тор имеет логический характер, что создает дополнительные трудности решения. Соб­ранная за три недели статистика представлена в таблице 3.1. Будем считать, что к мо­менту прогнозирования объема продаж известен прогноз погоды (температуры) на будущую неделю.

Подходов к решению этой задачи несколько. Рассмотри» сначала наиболее распро­страненный классический метод.

Для устранения влияния на зависимость продаж от температуры логической пере­менной - дня недели рассчитаем коэффициенты приведения для каждого дня недели к сред­недневной продаже (табл.. 3.2). Затем с помощью этих коэффициентов пересчитаем исход­ные данные о продажах (получим приверженные фактические продажи. показанные в табл..3.3

и на рис. 3.2). Аппроксимация этой зависимости прямой, описываемой уравнением 0=4,1 t 0 +23,76. дает очень хорошие результаты (коэф. корреляции 0,9). В табл.. 3.3 даны также результаты расчетов продаж на основе полученной трендовой линейной зависимости. С использованием этой же модели можно спрогнозировать приведенные продажи на будущую неделю, а затем с помощью коэффициентов приведения перечитать их в индивидуальные прогнозы на каждый день недели (табл. 3.4).



Значения коэффициентов а и в при линейной аппроксимации могут быть рассчитаны как на ПЭВМ, так и вручную по формулам

Попытка связать объемы продаж только с температурой, игнорируя влияние на них дня недели, несостоятельна. Это наглядно видно из графика (рис. 3.1) и значения коэффици­ента корреляции.

Другой, менее точный подход к решению состоит в том, чтобы в единый статисти­ческий массив свести данные с понедельника по четверг без разделения их на дни педели. То же проделать с данными пятницы, субботы и воскресенья. Для каждого из массивов подоб­рать аппроксимирующую кривую зависимости объемов продаж от температуры и на ее основе делать прогноз.

При наличии большей, чем сейчас, статистики эту процедуру можно осуществлять отдельно для каждого дня недели, что упростит и сделает более точным решение этой за­дачи. При этом плохо лишь то, что с ростом объема статистик на прогноз все большее влияние будет оказывать фактор сезонности, который мы до сих пор игнорировали.

Министерство сельского хозяйства РФ

Федеральное государственное образовательное учреждение

Высшего профессионального образования

Государственный университет по землеустройству

Кафедра экономической теории и менеджмента

Курсовая работа

По дисциплине «Анализ и диагностика финансовой деятельности предприятия»

На тему: «Факторный анализ элементов производства».

Выполнила:

студентка 34-э группы

Максимова Н.С.

Проверила:

Чиркова Л.Л.

Москва 2009 г.

Введение…………………………………………………………………………….....3

Глава 1. Факторный анализ элементов производства…………………………………………………………………………..4

1.1. Факторный анализ, его виды и задачи…………………………………………………………………………………..4

1.2 . Детерминированный факторный анализ. Требования к моделированию …………………………………………………………………………..8

1.3 Методы и виды детерминированного факторного анализа…………………..10

Глава 2 . Практическая часть………………………………………………………..14

2.1. Способы измерения влияния факторов в анализе хозяйственной деятельности………………………………………………………………………….14

2.2. Факторный анализ финансового состояния автотранспортного предприятия ОАО “Предприятие 1564”……………………………………………….….20

Заключение…………………………………………………………………….……..24

Список используемой литературы…………………………………………….........25

Приложения…………………………………………………………………………..26

Введение

Факторный анализ - совокупность методов многомерного статистического анализа, применяемых для изучения взаимосвязей между значениями переменных. С помощью факторного анализа возможно выявление скрытых (латентных) переменных факторов, отвечающих за наличие линейных статистических связей (корреляций) между наблюдаемыми переменными.

Цели факторного анализа:

  • сокращение числа переменных;
  • определение взаимосвязей между переменными, их классификация.

Факторный анализ возник в начале XX века, первоначально разрабатывался в задачах психологии. Большой вклад в развитие факторного анализа внесли Чарльз Спирмэн, Рэймонд Кеттел.

Методы факторного анализа:

  • метод главных компонент
  • корреляционный анализ
  • метод максимального правдоподобия

Факторный анализ – определение влияния факторов на результат - является одним из сильнейших методических решений в анализе хозяйственной деятельности компаний для принятия решений. Для руководителей - дополнительный аргумент, дополнительный "угол зрения".

Однако на практике он применяется редко в силу нескольких причин:

1) реализация этого метода требует некоторых усилий и специфического инструмента (программного продукта);

2) у компаний есть другие «вечные» первоочередные задачи.

Глава 1. Факторный анализ элементов производства

1.1 Факторный анализ, его виды и задачи.

Под факторным анализом понимается методика комплексного и системного изучения и измерения воздействия факторов на величину результативных показателей.

В общем случае можно выделить следующие основные этапы факторного анализа:

1. Постановка цели анализа.

2. Отбор факторов, определяющих исследуемые результативные показатели.

3. Классификация и систематизация факторов с целью обеспечения комплексного и системного подхода к исследованию их влияния на результаты хозяйственной деятельности.

4. Определение формы зависимости между факторами и результативным показателем.

5. Моделирование взаимосвязей между результативным и факторными показателями.

6. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.

7. Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

Отбор факторов для анализа того или иного показателя осуществляется на основе теоретических и практических знаний в конкретной отрасли. При этом обычно исходят из принципа: чем больший комплекс факторов исследуется, тем точнее будут результаты анализа. Вместе с тем необходимо иметь в виду, что если этот комплекс факторов рассматривается как механическая сумма, без учета их взаимодействия, без выделения главных, определяющих, то выводы могут быть ошибочными. В анализе хозяйственной деятельности (АХД) взаимосвязанное исследование влияния факторов на величину результативных показателей достигается с помощью их систематизации, что является одним из основных методологических вопросов этой науки.

Важным методологическим вопросом в факторном анализе является определение формы зависимости между факторами и результативными показателями: функциональная она или стохастическая, прямая или обратная, прямолинейная или криволинейная. Здесь используется теоретический и практический опыт, а также способы сравнения параллельных и динамичных рядов, аналитических группировок исходной информации, графический и др.

Моделирование экономических показателей также представляет собой сложную проблему в факторном анализе, решение которой требует специальных знаний и навыков.

Расчет влияния факторов - главный методологический аспект в АХД. Для определения влияния факторов на конечные показатели используется множество способов, которые будут подробнее рассмотрены ниже.

Последний этап факторного анализа - практическое использование факторной модели для подсчета резервов прироста результативного показателя, для планирования и прогнозирования его величины при изменении ситуации.

В зависимости от типа факторной модели различают два основных вида факторного анализа - детерминированный и стохастический.

Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т. е. когда результативный показатель факторной модели представлен в виде произведения, частного или алгебраической суммы факторов.

Данный вид факторного анализа наиболее распространен, поскольку, будучи достаточно простым в применении (по сравнению со стохастическим анализом), позволяет осознать логику действия основных факторов развития предприятия, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства. Подробно детерминированный факторный анализ мы рассмотрим в отдельной главе.

Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель.

Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам:

    необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
  • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
  • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

а) наличие совокупности;

б) достаточный объем наблюдений;

в) случайность и независимость наблюдений;

г) однородность;

д) наличие распределения признаков, близкого к нормальному;

е) наличие специального математического аппарата.

Построение стохастической модели проводится в несколько этапов:

  • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
  • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
  • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
  • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
  • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

Кроме деления на детерминированный и стохастический, различают следующие типы факторного анализа:

  • прямой и обратный;
  • одноступенчатый и многоступенчатый;
  • статический и динамичный;
  • ретроспективный и перспективный (прогнозный).

При прямом факторном анализе исследование ведется дедуктивным способом - от общего к частному. Обратный факторный анализ осуществляет исследование причинно-следственных связей способом логичной индукции - от частных, отдельных факторов к обобщающим.

Факторный анализ может быть одноступенчатым и многоступенчатым. Первый тип используется для исследования факторов только одного уровня (одной ступени) подчинения без их детализации на составные части. Например, . При многоступенчатом факторном анализе проводится детализация факторов a и b на составные элементы с целью изучения их поведения. Детализация факторов может быть продолжена и дальше. В этом случае изучается влияние факторов различных уровней соподчиненности.

Необходимо также различать статический и динамический факторный анализ. Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике.

И, наконец, факторный анализ может быть ретроспективным, который изучает причины прироста результативных показателей за прошлые периоды, и перспективным, который исследует поведение факторов и результативных показателей в перспективе.

1.2 Детерминированный факторный анализ. Требования к моделированию.

Детерминизм (от лат. determino - определяю) - учение об объективной закономерной и причинной обусловленности всех явлений. В основе детерминирования лежит положение о существовании причинности, т. е. о такой связи явлений, при которой одно явление (причина) при вполне определенных условиях порождает другое (следствие). }

© imht.ru, 2024
Бизнес-процессы. Инвестиции. Мотивация. Планирование. Реализация